

Research with M-Lab Data

Beacons in M-Lab data | Matt Mathis

Outline

- Beacons: A gold standard for longitudinal studies
- Methodology
 - A rich and computationally efficient representation
- More results
- Epilog

Part 1: Beacons

- A gold standard for longitudinal studies
- Single IP addresses that ran MLab tests for months or years
 - \circ 1.5 M devices active for 1 more than 1 year
 - 600 k devices active for more than 2 years
 - 2000 devices active for more than 6 years
- Self calibrated measurement of network change

A typical(?) Beacon

- 600+ tests
- Stable IP for almost 7
 10 years
- Small(?) ISP in East Europe
- Probably checking their upstream ISP

Reasons for beacons

- Small ISPs checking their own upstream connectivity
 - First observed in early 2009
 - Long stable IP addresses
- Autoconfig in applications or devices
 - Applications that need to measure their Intenet connectivity
 - e.g. BitTorrent
 - Likely to be subject to periodic IP reassignment
 - Which appear as non-overlapping sequential beacons
 - Does not affect basic longitudinal studies

Beacons

2-400k through mid 2016

- Mid 2016
 - Google One Box Ο
 - New embedded clients 0
- Todo: study IP reassignment

Methodology

- It started as a computational shortcut....
 - ... because it was quick and easy

Methodology details

- Count the entire M-Lab corpus into multidimensional arrays
 - Tabulate 1.4 B rows into about 500k counters
 - Typical axises:
 - Test date or time
 - Selected M-Lab servers, pods or metros
 - Powers of 2 performance bins from 1 Mbit/s to 512 Mbit/s
 - **■**
 - \circ Extremely efficient in BigQuery (~40 seconds)
- Plotting phase aggregates (sums) bins
 - Collapses some of the dimensions

Europe revisited

Directly infer user experience

- Some users experience can be noted directly from the graph
 - In 2010 about 30% of the users could run an application requiring 4 Mb/s
 - \circ By 2018, that had risen to about 65%
 - Other performance levels (e.g. HD video) can be interpolated
- Contrast this to conventional summary statistics
 - Mean, variance, quartiles, percentiles, etc
 - None easily predicts if users are happy

Algebra on metrics

- Arrays of counters can be added or compared
 - e.g. Compute US statistics by subtracting Canada and Mexico from North America
 - Dynamically aggregate small geographical areas into larger areas
 - Or to ask the net numbers of people who are better off
- This might have a profound impact on policy conversations
 - Recent strong encouragement on this point
 - Seeking opportunities to collaborate
- Again, all of these are nearly impossible with conventional summary statistics

Side discussion: The need for algebra

- For most metrics (e.g. milk fat) they can be predicted from other measures
 - e.g. Mixing equal parts 4% and skim milk yields 2% milk
 - Also under pins properties such as vantage independence, repeatability, etc
 - Similar concepts apply to nearly all metrics
 - Implicitly provides ways to cross check other people's measurements
- But not Internet performance
- RFC 2330 [1998] positis an "Analytical Framework" for Internet metrics
 - Twenty years later, this still remains a dream
 - Can not predict performance from any other metrics
- However arrays of counts might be able to predict many-to-many

More results: The good, bad and ugly

- •
- •
- •
- •

Europe revisited

Global Internet Performance

North America

Europe Cohorts (all, before 7/2014)

MLAB North American Cohorts (all, before 7/2013)

Epilog

• Things I learned on the way...

Observations about beacons

- Repeated tests from single clients ("A Beacon") help a lot.
 - Can compare beacons: Why are outliers different?
 - Beacons that share patterns share properties
 - Properties specific to beacons help identify "Beacon Swarms"
 - Beacon swarms that share code and or deployment

More observations...

- Beacons mostly eliminate the hard problems
 - Bias due to irregular testing
 - Each beacon is "self calibrated"
 - This property is preserved in aggregate, even if not individually identified
 - There is path to understanding self selection bias
 - By fingerprinting "swarms of beacons", and comparing different swarms
 - Are the users representative? Does it matter?
 - Is the test schedule representative? Does it matter?
 - Is testing correlated with network problems? ("testing in anger")

Some observations about big data

- With enough data, extremely subtle patterns are exposed
 - In particular, any changes to the network appear in the data
 - When looking for changes, the data is self calibrated
- Deliberate manipulation is hard
 - Any one source is a minority of the data, deliberate manipulation causes it to look different than other data

